首页 > 论文范文 > 电子论文

电力能效监测终端作用(三相导轨式智能能效采集终端作用)

2022-11-16  本文已影响 414人 
中国论文网为大家解读本文的相关内容:

 能源作为世界发展和经济增长最基本的驱动力,是人类赖以生存的基础。但随着人口的日益增加和能源的不断消耗,能源匮乏问题日益突出。电力作为重要的能源形式,在终端能源消费中所占比重不断增大,因此,建设更加安全、可靠、环保、经济的电力系统,不仅能在很大程度上化解资源、环境和投资压力,而且还将带来巨大的节电效益、经济效益、环境效益和社会效益[1-2]。国内外研究和实践证明,通过实施需求侧管理、用能服务及能效监测,可以优化终端用户用电方式、缓解电力供需的矛盾和提高系统可靠性、减缓电网设施的投资压力、提高耗能企业的能源利用水平、减少能源的消耗、提高能源利用率、缓解能源的供需矛盾[3]。
  随着微电子技术和设计制造技术的发展,集成电路设计从晶体管的集成发展到逻辑门的集成,现在又发展到IP(Intellectual Property)的集成,即片上系统SOC(System-On-Chip)[4-6]。与单功能芯片相比,SOC芯片具有集成度高、体积小、印制电路板(PCB)空间占用少、功耗低、抗电磁干扰能力强、可靠性高、成本低等优势。同时,可以有效地降低电子、信息系统产品的开发成本,缩短开发周期,提高产品的竞争力[7]。
  1 RN8316(SOC)简介
  图1 RN8316系统框图
  RN8316是深圳锐能微公司提供的一款低功耗、高性能、宽电压、高集成度、高精度的三相MCU芯片,产品系统框图如图1所示。该产品内嵌32位ARM Cortex-M0核,最高运行频率可达29.4812MHz,最大支持224Kbytes FLASH存储器、16Kbytes SRAM和16Kbytes EEPROM,内置单cycle乘法器(32bit*第一论文网专业提供论文写作和写作论文发表服务,欢迎您的光临lunwen. 1KEJI AN. C OM32bit)、CM0内嵌系统定时器、2个DMA控制器,支持外部中断等多种唤醒方式,提供完善的集成开发软硬件环境。该芯片支持高速GPIO,可与不同电压外设器件连接,最大支持10位ADC,8*32位的LCD,支持芯片电源电压及外部电压检测。通信接口最大支持6路UART,2个7816口,1路I2C和1路SPI。同时,RN8316还集成了RTC、看门狗和加密处理器。
  2 硬件电路设计
  电力能效监测终端主要由电源模块、计量单元、存储单元、载波模块、通信模块、直流模拟量采集等部分组成。系统的结构框图如图2所示。
  图2 电力能效监测终端设计框图
  2.1 电源模块设计
  为保证终端能够稳定工作,并具有良好的电磁兼容特性,电源模块采用三路电源供电,分别为主电源8 V、两路12 V辅助电源,之间相互隔离。主电源VDD8V通过LDO降为VDD5V和VDD3.3V电源,主电源5 V为SOC、红外、电能质量监测模块供电,主电源3.3V给计量芯片供电。一路ZB12V辅助电源用于载波电路供电;另一路AUX12V辅助电源为遥信电路供电,同时通过LDO降为AUX5V,为RS485、直流模拟量电路供电。电源电路设计如图3所示。
  2.2 采样计量单元
  采样计量单元是电力能效监测终端的重要单元,设计中采用锐能微公司的RN8302计量芯片来实现对电压、电流、功率、功率因数、谐波等数据的计量,并输出有功、无功脉冲。RN8302占用SOC一路SPI,同时SOC配置中断、复位口从而能够实现对计量芯片的控制和通信。RN8302管脚资源配置如图4所示。
  图4 RN8302管脚资源配置
  采样电路中,考虑到生产成本和计量精度,电压采样采用电阻分压采样的方式,UA/UAN,UB/UBN,UC/UCN为采样信号,而电流采样采用电流互感器采样的方式,IAP/IAN,IBP/IBN,ICP/ICN为采样信号,电路图分别如图5和图6所示,电压采样电路中的1K电阻和电流采样电路中的5R电阻采用精度1%的精密电阻,电容用于去耦和滤波,以保障采样精度。同时电压采样信号可用于电能质量的监测,扩展电力能效监测终端的功能配置。
  图5 电压采样电路
  图6 电流采样电路
  2.3 遥信电路
  电力能效监测终端配置两路遥信端口,使用光耦LVT-816同SOC进行隔离。遥信电路原理图如图7所示。
  图7 遥信电路
  2.4 RS485电路
  在实际工程运用中,由于受到工程人员操作能力,经验等因素的影响,RS485的A、B端子常常接反,导致不能够正常抄表。因此,在电力能效监测终端RS485电路的设计中,采用了无极性485芯片ECH485NE第一论文网专业提供论文写作和写作论文发表服务,欢迎您的光临lunwen. 1KEJI AN. C OM,A、B端子正反接都能够正常通信。终端配置两路RS485电路,分别用于抄表和维护,占用SOC两路UART端口,485芯片用光耦同SOC进行隔离。RS485电路如图8所示。
  2.5 直流模拟量电路
  直流模拟量电路主要针对非电气量的采集,该能效终端采用瑞萨电子的RL78/G13系列单片机进行控制,SOC通过一路UART端口进行通信,并配置复位脚进行控制。直流模拟量电路通过光耦同主电路进行隔离,终端配置了两路信号的采集,拓展了数据的采集范围,实现了采集和能效监测的多样化。直流模拟量采集电路图如图9所示。
  2.6 载波电路
  电力能效监测终端的载波用于同能效采集服务器进行通信,载波电路占用SOC一路UART端口用于收发数据,占用一路7816口实现载波的设置、复位、事件输出等功能,并通过光耦同SOC进行隔离,接口标准符合最新国网三相电表规范,可方便插拔和替换多个厂家的载波模块,提升了产品的兼容性。载波电路如图10所示。
  3 结束语
  本文在智能用电及能效管理的基础上,根据电力能效监测终端技术标准,采用SOC芯片RN8316,进行了硬件的设计。相对于传统的基于独立功能芯片的用电终端,基于SOC的电力能效监测终端在功耗,稳定性,可靠性等方面表现更加优异,并且体积小,所用元器件少,生产成本较低,具有良好的市场前景。
  参考文第一论文网专业提供论文写作和写作论文发表服务,欢迎您的光临lunwen. 1KEJI AN. C OM献
  [1]余贻鑫.面向21世纪的智能配电网[J].南方电网技术研究,2006,2(6):14-16.
  [2]陈树勇,宋书芳,李兰欣,等.智能电网技术综述[J].电网技术,2009,33(8):1-7.
  [3]虞斐,孔繁虹,梅生伟,许哲雄.智能电网下的新型能源管理系统设计方案[J].华东电力,2009(7):1176-1178.
  [4]周晓红.新型智能电表的发展现状及趋势[J].中国高新技术企业,2011(11):119-120.
  [5]中国化工仪器.我国仪器仪表行业现状及发展趋势[J].中国计量,2011(1):78-81.
  [6]静恩波.智能电网AMI中的智能电表系统设计[J].电测与仪表,2010,47(7A):36-39.
  [7]赵定远.SOC与嵌入式系统[J].成都大学学报(自然科学版),2007(4):305-308.
  作者简介
  黄月昊(1986-),男,江苏盐城人,助理工程师,硕士,任职于国电南瑞科技股份有限公司,从事智能用电技术方向。
  岳鹏(1984-),男,山东济宁人,工程师,硕士,任职于国电南瑞科技股份有限公司,从事智能用电技术方向。

  中国论文网(www.lunwen.net.cn)免费学术期刊论文发表,目录,论文查重入口,本科毕业论文怎么写,职称论文范文,论文摘要,论文文献资料,毕业论文格式,论文检测降重服务。 返回电子论文列表

展开剩余(
全固态广播电视发射设备故障检查方法(广播电视发射机安装和维护)上一篇: 返回列表下一篇:

继续阅读

热门标签