其中边缘定位是对边缘图像进行处理,以得到单像素宽的二值边缘图像,通常使用的技术是阈值法和零交叉法。边缘定位后往往存在一些小的边缘片断,通常是由于噪声等因素引起的,为了形成有意义的边缘需要对定位后的边缘进行链接。通常有两种算法:局部边缘链接和全局边缘链接。3 边缘模型的分类及性能分析 本小节从边缘检测“两难”问题出发,总结了实际图像中可能出现的七种边缘类型,并分别给出了数学模型描述,最后分析比较了不同边缘类型表现出的特性及不同类型的边缘定位与平滑尺度的关系。3.1 边缘检测的“两难”问题 首先来了解一下边缘检测的常用定义[13]:边缘检测是根据引起图像灰度变化的物理过程来描述图像中灰度变化的过程。引起图像灰度不连续性的物理过程可能是几何方面的(深度的不连续性、表面取向、颜色和纹理的不同),也可能是光学方面的(表面反射、非目标物体产生的阴影及内部倒影等)。这些景物特征混在一起会使随后的解释变得非常困难,且实际场合中图像数据往往被噪声污染。信号的数值微分的病态问题:输入信号的一个很小的变化就会引起输出信号大的变化。令 f(x)为输入信号,假设由于噪声的影响,使 f(x)发生了一个很小的变动: 式(3.1) 其中 ε<<1。对式(3.1)两边求导数则:式(3.2) 由式(3.2)可以看到,若w足够大,即噪声为高频噪声时,会严重影响信号f(x)的微分输出,进而影响边缘检测的结果。为了使微分正则化,则需要先对图像进行平滑。然而图像平滑会引起信息丢失,并且会使图像平面的主要结构发生移位。另外若使用的微分算子不同,则同一幅图像会产生不同的边缘,因此噪声消除与边缘定位是两个相互矛盾的部分,这就是边缘检测中的“两难”[14,15]。3.2 边缘分类及性能分析 图像中的边缘通常分为:阶跃边缘、斜坡边缘、三角型屋脊边缘、方波型屋脊边缘、楼梯边缘、双阶跃边缘和双屋脊边缘[1]。 (1)阶跃边缘 模型为:f(x)=cl(x) ,其中 c>0为边缘幅度, 为阶跃函数。若存在噪声,可以选用大尺度的模板平滑图像,不会影响边缘的定位。 (2)斜坡边缘 理想的斜坡边缘模型为:,其中s为边缘幅度,d为边缘宽度。斜坡边缘的检测不仅跟尺度有关,还与边缘本身的宽度有关,若边缘宽度比较小,则在小的平滑尺度下也能检测到边缘;无论是检测极值点还是过零点,边缘的定位都没有随着尺度的变化而变化。因此,对于斜坡边缘若存在噪声,可以选用大尺度的模板平滑图像。而不会影响到边缘定位。 (3)三角型屋脊边缘 模型为:,其中s为边缘幅度,d为边缘宽度。对于三角型屋脊边缘若存在噪声可以选用大尺度的平滑模板,而不会影响边缘的定位。 (4)方波型屋脊边缘 方波型屋脊边缘的模型为:,其中s为边缘幅度,d为边缘宽度。对于方波型屋脊边缘检测,不仅与平滑尺度有关,还与边缘宽度有关,若存在噪声,可以选用大尺度的平滑模板,而不会影响边缘的定位。 (5)楼梯边缘 楼梯边缘模型为:,其中c1、c2、l均为常数。这种检测的特点是平滑后的楼梯边缘不能准确定位,必须对检测到的边缘位置进行移位校正。 (6)双阶跃边缘 双阶跃边缘与方波型屋脊边缘相同,不同之处为:双阶跃边缘的边缘点为x=-d/2与 x=d/2,而方波型屋脊边缘的边缘点为 x=0。双阶跃边缘的两个边缘点通过检测一阶导数的两个极值点和二阶导数的两个过零点获得。因此对于双阶跃边缘大尺度下不能准确定位,必须对检测到的边缘位置进行移位校正。 (7)双屋脊边缘 模型为:, 其中: s为边缘幅度,l为屋脊边缘的宽度,d为两个屋脊边缘间距。 实际图像中边缘类型的分类及边缘定位于平滑尺度的关系如表3.1所示。实际应用中可根据具体要求进行建模,选取合适的平滑尺度,尽可能解决“两难”问题。 如果已知目标物体的边缘类型,则可以根据该边缘类型一阶倒数和二阶倒数的特性以及与平滑尺度的关系只检测出目标物体所属的边缘类型,滤掉其他的边缘类型。4 小结 边缘检测是基于边界的分割方法。由于图像边缘是图像最基本的特征,往往携带着图像中最重要的信息。因此边缘检测在计算机视觉、图像分析等应用中起着重要的作用,为人们描述或识别目标以及解释图像提供了一个有价值的特征参数。本文较详细地回顾了现有的边缘检测技术和方法,并对边缘检测的步骤作了总结。 在微分法边缘检测中,边缘定位与噪声滤除是两个相互矛盾的部分,很难同时得到很好的解决,这就是边缘检测的“两难”问题。从这个难题出发,对实际图像中可能出现的七种边缘类型分别进行数学模型描述。由于实际图像比较复杂,往往包含多种边缘类型,因此很难对其进行建模和分类。本章得到的结论为边缘类型的分类提供了依据。若能预先对边缘类型进行分类,则可选取合适的平滑尺度,较好地解决边缘检测的“两难”问题。参考文献 [1] 王慧燕.图像边缘检测和图像匹配研究及应用.浙江大学博士学位论文,2003:1-32. [2] 吴炯,张秀彬,张峰等.数字图像中边缘算法的实验研究.微计算机信息(测控自动化).2004,vol20,5:106-107. [3] l. s. davis. a survey of edge detection techniques. cgip, 1975, 4:248-270. [4] l. g. robert. machine perception of three-dimensional solids. in: optical and electro-optical information processing, tippett j, et al. eds.1965:159-197. [5] v. torre, t. a. poggio. on edge detection. ieee trans on pami, 1986, 8(2):142-163. [6] b. buxton. early image processing structural techniques motivated by human visual response. university of surrey,1984. [7] j. j. clark. authenticating edges produced by zero-crossing algorithm. ieee trans on pami,1998,11(1):43-57. [8] a. rosenfeld. computer vision: a source of models for biological visual process. ieee trans on biomed eng,1989,36(1):83-94. [9]王忠华,汪胜前,邓承志等.基于层间相关性的小波边缘检测.江西师范大学学报(自然科学版).vol.28,no.5:379-381. [10] p. saint-marc, j. s. chen, g. medioni. adaptive smoothing: a general tool for early vision pattern analysis and machine intelligence. ieee transactions on vol. 13 issue: 6, june 1991:514-529. [11]王倩,阮海波.快速模糊边缘检测算法.中国图像图形学报.2001,6(1):92-95. [12]周德龙,潘泉.图像模糊边缘检测的改进算法.中国图像图形学报.2001,6(4):353-358. [13] v. torre. t. poggio,1996. on edge detection. ieee transactions on pattern analysis and machine intelligence 8:147-162. [14] m. bertero. t. a. poggio. iii-posed problems in early vision. proceeding of the ieee,vol,76,n.8, august 1998. [15] t. poggio and v. torre. iii-posed problems and regularization analysis in early vision. artificial intelligence lab. memo,no.773, massachusetts institute of technology,1984.
中国论文网(www.lunwen.net.cn)免费学术期刊论文发表,目录,论文查重入口,本科毕业论文怎么写,职称论文范文,论文摘要,论文文献资料,毕业论文格式,论文检测降重服务。 返回电子论文列表