首页 > 论文范文 > 历史论文

数据挖掘与机器学习,数据挖掘与机器学习是什么

2024-02-16  本文已影响 41人 

今天中国论文网小编为大家分享毕业论文、职称论文、论文查重、论文范文、硕博论文库、论文写作格式等内容.一、数据挖掘,数据分析,机器学习三者之间是什么关系?

数据挖掘,机器学习,自然语言处理三者的关系:

Www.Nokibar.Com

1、数据挖掘、机器学习、自然语言处理三者之间既有交集也有不同,彼此之间既有联系和互相运用,也有各自不同的领域和应用。

2、数据挖掘是一门交叉性很强的学科,可以用到机器学习算法以及传统统计的方法,最终的目的是要从数据中挖掘到需要的知识,从而指导人们的活动。数据挖掘的重点在于应用,用何种算法并不是很重要,关键是能够满足实际应用背景。而机器学习则偏重于算法本身的设计。

3、机器学习通俗的说就是让机器自己去学习然后通过学习到的知识来指导进一步的判断。用一堆的样本数据来让计算机进行运算,样本数据可以是有类标签并设计惩罚函数,通过不断的迭代,机器就学会了怎样进行分类,使得惩罚最小。然后用学习到的分类规则进行预测等活动。

4、自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理是一门融语言学、计算机科学、数学于一体的科学。因此,这一领域的研究将涉及自然语言,即人们日常使用的语言,所以它与语言学的研究有着密切的联系但又有重要的区别。自然语言处理并不是一般地研究自然语言,而在于研制能有效地实现自然语言通信的计算机系统,特别是其中的软件系统。因而它是计算机科学的一部分。自然语言处理(NLP)是计算机科学,人工智能,语言学关注计算机和人类(自然)语言之间的相互作用的领域。

二、系统集成什么是数据挖掘?

是指通过大量数据集进行分类的自动化过程,以通过数据分析来识别趋势和模式,建立关系来解决业务问题。换句话说,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

三、数据挖掘寻找模式和规则主要是利用?

数据挖掘是从海量信息中进行搜索提取有价值信息的过程,是一个由处理数据、得到信息、挖掘知识等环节组成的工作过程,在这个过程中可能用到机器学习等各种算法,最终的目的是进行智能决策,而这个智能也可以理解为人工智能。比如说通过挖掘历史的销售数据找到商品之间的关联规则,大家熟知的啤酒尿布的故事就是一个典型案例。

模式识别

要想知道什么叫做模式识别,那就要先了解什么叫做模式,通常意义上,模式指用来说明事物结构的一种表达。它是从生产生活经验中经过抽象提炼出来的知识,说直白点就是可以用来表示事物的一些列特征的集合。

模式识别从十九世纪五十年代兴起,在二十世纪七八十年代风靡一时,是信息科学和人工智能的重要组成部分,主要被应用于图像分析与处理、语音识别、计算机辅助诊断、数据挖掘等方面。但是其效果似乎总是差强人意,因为模式识别中的事物特征是由人类设计总结的、主要基于人类在某一方面的领域知识,也就是说模式识别的效果不可能超过人类、有很大的局限性。

四、python 数据挖掘原理?

数据挖掘是通过对大量数据的清理及处理以发现信息, 并将这原理应用于分类, 推荐系统, 预测等方面的过程。

数据挖掘过程:

1. 数据选择

在分析业务需求后, 需要选择应用于需求业务相关的数据. 明确业务需求并选择好业务针对性的数据是数据挖掘的先决条件。

2. 数据预处理

选择好的数据会有噪音, 不完整等缺陷, 需要对数据进行清洗, 集成, 转换以及归纳。

3. 数据转换

根据选择的算法, 对预处理好的数据转换为特定数据挖掘算法的分析模型。

4. 数据挖掘

使用选择好的数据挖掘算法对数据进行处理后得到信息。

5. 解释与评价

对数据挖掘后的信息加以分析解释, 并应用于实际的工作领域。

五、大数据挖掘的特点有哪些?

①基于大量数据

并不是说在小数据上不可进行数据挖掘,实际上大多数的算法均可在小数据上运行并得到结果。只不过,小数据量完全可以通过人工分析来总结规律,再者,小数据量在大多数情况下是无法反映出普遍性的。

②非平凡性

所谓非平凡,指的是挖掘出来的知识绝非那么简单的,绝不能是类似某著名体育评论员所说的“经过我的计算,我发现了一个有趣的现象,到本场比赛结束为止,这届世界杯的进球数和失球数是一样的。非常的巧合!”那种知识。

③隐含性

数据挖掘的意义就是要深层次挖掘隐藏在数据内部的知识,而不仅仅是浮现在数据表面的信息。其中常用的BI工具,如报表和OLAP是完全可以让用户找出相关信息的。

④新奇性

经过数据挖掘出来的知识应该是以前未知的,因为只有全新的知识,才可以帮助企业获得进一步的洞察力。

⑤价值性

数据挖掘出来的结果必须是能给企业带来直接的或间接的效益。虽然有时候,在一些数据挖掘项目中,或因缺乏明确的业务目标,或因数据质量的不足,或因挖掘人员的经验不足等因素,均会导致挖掘效果不佳或者说完全没有效果。但那仅仅只是一部分,依旧有大量的成功案例在不断证明着数据挖掘是的确可以变成提升效益的利器的。

好了,有关数据挖掘技术具有哪些特点的内容分享到此就结束了,想要了解更多数据分析,数据挖掘等相关内容,可查阅本站其他内容,希望对大家能有所帮助

wWw.lunwen.net.Cn中国论文网免费学术期刊论文发表,目录,论文查重入口,本科毕业论文怎么写,职称论文范文,论文摘要,论文文献资料,毕业论文格式,论文检测降重. 返回历史论文列表

展开剩余(
论文盲审不通过的几率大吗,毕业论文盲审没去掉个人信息上一篇: 返回列表下一篇:

继续阅读

热门标签