数学之美学断想
数学中处处蕴涵着美——形式的美与内容的美,内隐的美与外显的美,婉约的美与奇异的美,独立的美与统一的美,这些美自然而不矫作,高贵而不俗庸,沉稳而不浮躁,冷峻中不失灵动,奇异中又不乏和谐,这些美反映了一种自然的秩序论文联盟http://与规律,同时也更加彰显了人的最深层次的本质力量对象化的外部结果。如果将彪炳史册的数学大家们比作美的缔造者与传播者,我想,这一点也不为过。这是因为,在他们深沉的笔触之下所流淌出来的和谐而隽永的数学乐章,历久弥新,时刻能让后学者感受到……一组精要的数学符号,一个简单的数学公式,一条言简深邃的数学定理,一种精彩绝伦的数学构想……,无不闪现着这些数学巨人们思想深处那汩汩不息的美感之源所散发出的激情与脉动,其升腾出的美的氤氲,笼罩着一种思维上的灵逸和深远,带给人们一丝迷醉其中的淡淡情愫。鉴于此,笔者拙笔写下了这篇断想。
一、数学美的存在性
客观世界中处处渗透与体现着数学美,数学美是对客观世界内在规律的反映。对于数学美与客观世界之间的相互联系,其实早在古希腊时期,毕达哥拉斯学派就开始着手研究。毕氏学派在研究音乐乐理的谐音与天体运行的轨道时,发现二者在数量关系上都满足整数比,从而就此得出结论“宇宙间万物的总规律,其本质就是数的严整性和和谐性”,“美是和谐与比例”。在这样的认识基础上,毕氏学派试图从数和数的比例中求得美和美的形式,并终于从五角星形中发现了“黄金分割”,进而得到黄金比。这是数学美学认识史上的一大突破。从古希腊到现在,黄金比在各种造型艺术中都有着重要的美学价值。现代科学研究甚至表明,黄金比在现代最优化理论中也有着应用价值,如优选法中的0.618法。即使在现代医学保健领域中,都可以处处感受到它的存在与神奇。最令人惊奇的是,很多生物的形体比例也是等于黄金比。难
道它们都懂得优选法,自觉采用黄金比?不!这只能证明美学家的断言:“美是一切事物生存和发展的本质特征。”
二、数学美的独特性 论文联盟http://
1、数学的美是内在的美、隐蔽的美、深邃的美,美在数学思想内部,数学美是客观规律的反映,但这种反映不是像照镜子那样直接反映,而是人的能动反映,是自然社会化的结果,是人的本质力量对象化的结果。它所反映的不单纯是客观事物,而是融合了人的思维创造。因此,要领悟数学美必须透过,“抽象、枯燥”的符号、公式及定理等洞察其内部的数学思想:比如,数学家们把等式e[πi]+1=0
视为最优美的公式,美在哪里?其实,这个式子将算术中的“1”“0”,代数中的“i”,几何中的“π”,分析中的“e”神奇地统一在了一起,即它们相会于天桥:e[iθ]=cosθ+isinθ(在该式中令θ=π就可得到上式),它沟通了三角函数与指数函数之间的内在联系,充分体现了数学的统一美。
2、从价值追求的角度看,数学美实质上体现了人的审美精神,这种精神说到底是一种理性的精神,恰恰是这种精神,“使得人类的思想得以运用到非常完善至美的程度”,即“完满的境地”;正是这种精神,“从一定程度上影响人类的物质、道德和社会生活,以试图回答有关人类自身提出的一些问题”;正是这种精神,“使得人们能尽可能地去理解、了解、控制自然,掌握客观世界的规律”;正是这种精神,“使人们有可能去探求和确立已经获得的知识的最深刻的、最完美的学科内涵”,并使之“纯净到崇高的地步”。这是笔者从罗素的论述中感悟到的数学美的精神层面的独特内涵。
三、数学美的驱动性
对于数学美的追求历来是科学家进行发现与创新的重要内部驱动力。阿达玛与彭加勒都曾从心理学角度阐释美与发明创造之间的关系。他们认为,创造的本质就是做出选择,就是要抛弃不合适的方案,保留合适的方案,而支配这种选择的正是科学美感。正如阿达玛所说的:“科学美感,这种特殊的美感,是我们必须信任的向导,”因为,“唯有美感能预示将来的研究结果是否会富有成果。”数学史的研究表明,希腊几何学家之所以研究椭圆,可以说除了美感之外,再没有什么其他动力了。著名物理学家麦克斯韦在没有任何实验依据的情况之下,仅从数学美的考虑出发,将实验得出的电磁理论方程重新改写,以求得方程形式上的对称优美。令人惊异的是,改写的方程竞被后来的实验证实了,而且利用方程还可推导出一系列令人陶醉的结果,电磁理论决定性的一步就这样跨出了。这不能不让人相信美的确具有如此巨大的推动力与支配力。诚如爱因斯坦所言:“照亮我的道路,并且不断地给我新的勇气去愉快地正视生活的理想,是善、美和真。”事实上,爱因斯坦所提出的科学思想,有很多是出于美学而不是逻辑的考虑。他对实验和理论不相符的忧虑,甚至远远不及对基本原理的不简洁、不和谐所引起的忧虑,而这正是刺激他的思想的源泉。
四、数学美的甄别性
古往今来的很多数学家、科学家都将数学美视作衡量自己或他人研究成果的重要评价尺度之一。数学美犹如一个筛子,数学家们利用这个筛子对理论中的各种因素做总体上的甄别与评判,剔除丑陋保留美好,力图最终获得“美”与“真”的完美统一。著名数学家冯•诺伊曼就曾说过:“我认为数学家无论是选择题材还是判断成功的标准,主要都是美学的。”庞卡莱则更明确地说:“数学家们非常重视他们的方法和理论是否优美,这并非华而不实的作风……一个解答、一个证明的和谐、对称以及恰到好处的平衡……能使我们对整体以及细节都能有清楚的认识和理解,这正是产生伟大成果的地方。”
在教育部刚刚制定并颁布的《数学课程标准》中,有关数学美的要求已开始有所涉及,这反应了一种趋势,即数学美育在数学教学中的比重将逐渐加大。
中国论文网(www.lunwen.net.cn)免费学术期刊论文发表,目录,论文查重入口,本科毕业论文怎么写,职称论文范文,论文摘要,论文文献资料,毕业论文格式,论文检测降重服务。 返回艺术论文列表